Public Key Cryptography in the Bounded Retrieval Model

Joint work with Joël Alwen, Shabsi Walfish & Daniel Wichs

Eurocrypt'09 Speaker: Yevgeniy Dodis (NYU)

Leakage Attacks

- Standard Crypto Assumption: keys stored secretly.
- Reality: information leaks
 - Timing attacks, Power consumption attacks, Freezing attacks, Hackers, Malware, Viruses...
- Usual Crypto Response: not our problem.
- Better Crypto Response: provably secure primitives that allow leakage.
 Assume leakage *arbitrary but incomplete*.

Modeling Incomplete Leakage

- □ Adversary can learn any efficiently computable function $f : {0,1}^* \rightarrow {0,1}^L$ of the secret key.
 - L = Leakage Bound.
 - Relative leakage [AGV09, DKS09, NS09, KV09].
 - Key size dependent on security parameter (e.g. 1024 bits).
 Leakage L is dependent on key size (e.g. 50% of key size).
 - Goal: Allow for large percentage of leakage.
 - Problem: in reality, leakage may be large in absolute terms (e.g. L can be on scale of Kbs, Mbs or even Gbs)
 - For example: hackers/malware/virus attacks.
 - More robust model: Absolute leakage

Modeling Incomplete Leakage

- □ Adversary can learn any efficiently computable function f : $\{0,1\}^* \rightarrow \{0,1\}^L$ of the secret key.
 - L = Leakage Bound. k = Security Parameter
 - Relative leakage [AGV09, DKS09, NS09, KV09].
 - Bounded Retrieval Model (BRM) [Dzie06, CLW06, DP07]:
 - Key size |SK| depends on security parameter k AND leakage bound L. (Note: must be more than L)
 - Other efficiency parameters only depend on k.
 - E.g., public key, communication, computation, read-locality
 - Goal: flexibly accommodate ANY leakage bound L <u>ONLY</u> by increasing |SK| and <u>without impacting other parameters</u>.

Our Results

- Efficient constructions of virtually all public key primitives in the BRM:
 - ID, Signatures, Authenticated Key Agreement (AKA) [ADW09].
 - Based on Okamoto ID/Sigs.
 - Encryption, IBE [ADWW09].
 - Based on Gentry IBE.
- Efficiency: Leakage bound L. Security parameter k.
 - Secret key size: O(L), in some cases $L(1 + \varepsilon)$.
 - Public key size: Constant number of group elements.
 - **Communication**:
 - ID/Sig/AKA: Constant number of group elements.
 - Enc/IBE: O(k) group elements.
 - Data Accessed: O(k) group elements.
 - Computation: O(k) exponentiations.

What does it mean? For example...

- An efficient Authenticated Key Agreement (AKA) protocol with short public key and 10 GB secret key.
 All other efficiency parameters "short" as well
- A virus must download at least 5 GB of information to *impersonate* the infected computer
- All sessions completed prior to infection remain secure, even if virus learns the entire 10 GB key.
 Major advantage over encryption [AGV09,NS09,KV09,ADWW09].
- Almost as efficient as standard protocols.