Beer-recovery attack

Jean-Philippe Aumasson
Dmitry Khovratovich

Keccak

 SHA-3 candidate
Keccak

SHA-3 candidate NGT Sponge with permutation KECCAK-f[1600] y

Keccak

SHA-3 candidate NGT Sponge with permutation Keccak-f[1600]

No external cryptanalysis

Keccak

SHA-3 candidate NGT
Sponge with permutation KECCAK-f[1600]

No external cryptanalysis

A Trappist beer award

Keccak

SHA-3 candidate NGT
Sponge with permutation KECCAK-f[1600]

No external cryptanalysis

A Trappist beer award

So we start...

CICO problem for KECCAK-f[1600]

KECCAK-f[1600]: $\{0,1\}^{1600} \mapsto\{0,1\}^{1600}$
Constrained Input - Constrained Output (CICO) problem:

- Fix $X, Y \subset\{0,1\}^{1600}$
- Find many $x \in X, y \in Y$: $f(x)=y$
- Hard if X and Y are small

Triangulation tool

- View the transformation as a system of equations
- Fix some input and output bits to 0
- Find solutions with complexity 1

Three rounds (of 18) can be attacked

The tool is online: https://cryptolux.uni.lu/ mediawiki/uploads/0/03/Keccak-tool.zip

Algebraic analysis

Bounds b on the degree given in the spec (\Rightarrow cube tester in 2^{b+1} possible)

Our result: heterogeneous algebraic structure even for small cubes

3 rounds, degree-2 cubes

\#components attacked = cube position

4 rounds, degree- 9 cubes

\#components attacked = cube position

Keccak's doc conjectures 13 rounds enough against distinguishers
Need 11 rounds for maximal degree...
How many rounds for a homogenous
(reduced-degree) structure?

Truncated differentials

First find $\Delta_{\text {in }} \mapsto \Delta_{\text {out }}$ for θ^{-1}
with Hamming weight $\left|\Delta_{\text {in }}\right|=1,\left|\Delta_{\text {out }}\right| \approx 1600 / 2$
(conjectured optimal in the documentation)
Used to find probability-1 truncated differential on 3 rounds

On four rounds, still large biases

Conclusions

Inverse permutation more difficult to attack

- faster diffusion
- proba-1 differentials on 1 round only

Results consistent with the designers' analysis
Good security margin

