

Attack on Ciphers based on Multiple Recursive Generators

Lu Xiao and Greg Rose Eurocrypt'09 Rump Session

What is an MRG cipher?

- Proposed by A. Olteanu *et al.* at IEEE GLOBECOM 2008
- A lightweight block cipher based on a multiple recursive generator (really LFSR mod P)
- Any MRG with order k >47 is extremely slow and impractical
- "They achieve enhanced security while consuming less resource!" – last sentence of the paper.

A Distinguishing Attack

Observed bias: the MSBs of a ciphertext word's 4 bytes all match the corresponding plaintext word's MSB with probability (1/16)+2⁻¹¹.

Distributions with 2¹⁸ Samples

Distributions with 2²² Samples

A Known-Plaintext Attack

- Observed vulnerability: the key mixture and permutation are poorly designed, which enables effective subkey space reduction.
 - The specific cipher suggested by its inventors: the key can be derived using 94 plaintext words and negligible computation.
 - More importantly, we prove that there is an upper bound of workload to successfully attack all ciphers designed in this method => All are easy to break.
 - ➢ Be vigilant when Multiple Recursive Generators are proposed for either a cipher or a random number generator ☺.

Attack Summary

\Box Attack complexity

	Distinguishing	Known PT attack on	Known PT attack on
	attack	efficient MRG ciphers	any MRG cipher <i>k</i> ≤47
Space (magnitude of words)	2 ¹⁸	2 <i>k</i> (94 words when <i>k</i> =47)	≤4686 (about 2 ¹²)
Time	trivial	48k	≤2 ²⁴ MRG ops +
(encryptions)		(2256 when k=47)	2 ¹² encryptions

□ More details: <u>eprint.iacr.org/2009/128</u>, to be submitted to SAC 2009.

