SHA-1 collisions now 2^{52}

Cameron McDonald, Philip Hawkes and Josef Pieprzyk

cmcdonal@ics.mq.edu.au

Macquarie University and Qualcomm, Australia

Motivation and Achievements

- In November 2008, Stéphane Manuel published a new disturbance vector for SHA-1 with complexity 2^{57} . He provided no differential path through the first 20 steps.
- Using Joux and Peyrin's boomerang attack with n auxiliary differentials, the complexity can be reduced to 2^{57-n} .
- Our goal is to find a non-linear main differential path through the first 20 steps where a maximum number of auxiliary differentials can be applied.
- Achieved: A differential path with 5 independent auxiliary paths complexity 2⁵².

Method

Manual

Aided by a web based tool written in javascript. Allows tweaking of conditions, the resulting differences are propagated through the function.

Automated Path Tool

Tree searching algorithm that exhaustively searches differences generated by the modular addition and boolean f function. Has the option to specify weight (number of conditions/differences), neutral bits and auxiliary conditions.

SAT Solving

Convert the problem into a corresponding propositional formula and attempt to find a solution using a SAT solver.

Best results have come from using a combination of all three methods!

Example Path - 2^{52} (5 Aux)

i	A_i	W_i
-4		
-3		
-2		
-1	.v.1 vvv 0	
0	100	
1	1+v-av.dvvgjvvv.m01v1.+.1	++-+adgjm+
2	0-+00111111+0x0	-ā++d̄ḡj̄m̄+.+.
3	110+b00e00hk00+-n.0.101.++.0	+behkn+
4	+10111 0 1vvv0+. 00 11 0 0101.0000	.b++ē.āhkd.ngjm+-+
5	1.0-0-++0+0000001000	+++ād̄gj̄m̄+.+
6	+10011-+++++++.11-+111	ād̄ḡjm̄
7	++0.00.1.111110v1-100++	-+bēhkā+
8	00011001111101+	bēhkn+
9	0++1 1vvvv 1v0vvv+001-	+.++
10	0.+011.+00010	++
11	1cfilp-++++101+-	+cfilp+
12	+ . + 01 000 0 0 1111 -+ 010	.ēfiīp+
13	++000 00000 0111111-+	+
14	-+- 100110	+
15	++1+	.++ēfīīp+
16	+	āfīīp+.+
17	-++	++
18		+++
19	+	+
20	+	++

Conclusion

- Until now, the best complete differential path (to our knowledge) has complexity 2^{63}
- \blacksquare The new path presented has complexity 2^{52} a significant reduction.
- Practical collisions are within resources of a well funded organisation.
- We are continuing our search for differential paths where the boomerang attack can be used with maximum effect.
- Paper will appear on eprint soon.