Leakage-Resilient Public-Key Cryptography

Krzysztof Pietrzak

Centrum Wiskunde & Informatica

Eurocrypt 2009 Rump Session

- Secret initial state S_0
- On query X_i
 - Compute $(Y_i, S_i) \leftarrow f(X_i, S_{i-1})$.
 - Output Y_i .

- Secret initial state S_0
- On query X_i
 - Compute $(Y_i, S_i) \leftarrow f(X_i, S_{i-1})$.
 - Output Y_i .

- Secret initial state S_0
- On query X_i
 - Compute $(Y_i, S_i) \leftarrow f(X_i, S_{i-1})$.
 - Output Y_i .

- Secret initial state S_0
- On query X_i
 - Compute $(Y_i, S_i) \leftarrow f(X_i, S_{i-1})$.
 - Output Y_i .

伺 と く ヨ と く ヨ と

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

• Computation leaks information $\Lambda_1, \Lambda_2, \ldots$ on each invocation.

- Computation leaks information $\Lambda_1,\Lambda_2,\ldots$ on each invocation.
- Must prove security against side-channel attacks, but which?

Some Side-Channels

- ((1)) electromagnetic radiation [QuisquaterS01] power consumption [KJJ99] running-time [Kocher96] ٥ sound [ShamirTromer] people.csail.mit.edu/tromer/acoustic
- . . .

• Can't achieve secure implementations by securing against particular side-channel attacks.

- Can't achieve secure implementations by securing against particular side-channel attacks.
- Need security against all side-channel attacks under reasonable assumption on the underlying hardware.

- Can't achieve secure implementations by securing against particular side-channel attacks.
- Need security against all side-channel attacks under reasonable assumption on the underlying hardware.
- Leakage Resilience [DP07]: Security against all side-channel attacks where
 - The *amount* of information leaked is bounded.
 - Only computation leaks information [MR04].

Modelling Leakage Resilience

• f_i is any *efficient* function with range $\{0, 1\}^{\lambda}$.

Modelling Leakage Resilience

$$\xrightarrow{X_{i}, f_{i}} \xrightarrow{X_{i}, f_{i}} \xrightarrow{X_{i}} \xrightarrow{X_{i}, f_{i}} \xrightarrow{X_{i}} \xrightarrow{X_{i}, f_{i}} \xrightarrow{X_{i}} \xrightarrow{X_{i}, f_{i}} \xrightarrow{X_{i}} \xrightarrow{X_$$

• f_i is any *efficient* function with range $\{0, 1\}^{\lambda}$.

- Leakage-resilient stream-cipher [DP FOCS'07].
- Leakage-resilient signatures (tree-based) [FKP09,???].

- Leakage-resilient stream-cipher [DP FOCS'07].
- Leakage-resilient signatures (tree-based) [FKP09,???].
- Both in the standard model under min. assumption.

- Leakage-resilient stream-cipher [DP FOCS'07].
- Leakage-resilient signatures (tree-based) [FKP09,???].
- Both in the standard model under min. assumption.

State of leakage-resilient PKC: "Tree-based" signatures not very practical, PKE open. What we want: Efficient leakage-resilient signatures/PKE. Or even better: Leakage-resilient instantiation of popular schemes.

- Leakage-resilient stream-cipher [DP FOCS'07].
- Leakage-resilient signatures (tree-based) [FKP09,???].
- Both in the standard model under min. assumption.

Leakage-Resilient instantiations of [with Eike Kiltz]

- PKE: Bilinear ElGamal (CCA1,CCA2?).
- Signatures: Waters Signatures.

security proof in the generic group model.

- Leakage-resilient stream-cipher [DP FOCS'07].
- Leakage-resilient signatures (tree-based) [FKP09,???].
- Both in the standard model under min. assumption.

Leakage-Resilient instantiations of [with Eike Kiltz]

- PKE: Bilinear ElGamal (CCA1,CCA2?).
- Signatures: Waters Signatures.
- security proof in the generic group model.
 - PKE: ElGamal.

under falsifiable assumption.

Bilinear ElGamal

- Cyclic groups \mathbb{G}, \mathbb{G}_T of order p
- Bilinear map $e(g^x, g^y) = e(g, g)^{xy}$.
- Key Generation: $x \leftarrow \mathbb{Z}_p$ $sk = g^x$ $pk = e(g,g)^x$
- Key Encapsulation: $C \leftarrow g^r$ $K \leftarrow e(g,g)^{xr}$.
- Key Decapsulation: $K \leftarrow e(C, g^{\times})$.

Bilinear ElGamal

- Cyclic groups \mathbb{G}, \mathbb{G}_T of order p
- Bilinear map $e(g^x, g^y) = e(g, g)^{xy}$.
- Key Generation: $x \leftarrow \mathbb{Z}_p$ $sk = g^x$ $pk = e(g,g)^x$
- Key Encapsulation: $C \leftarrow g^r$ $K \leftarrow e(g,g)^{xr}$.
- Key Decapsulation: $K \leftarrow e(C, g^{\times})$.

Bilinear ElGamal

- Cyclic groups \mathbb{G}, \mathbb{G}_T of order p
- Bilinear map $e(g^x, g^y) = e(g, g)^{xy}$.
- Key Generation: $x \leftarrow \mathbb{Z}_p$ $sk = g^x$ $pk = e(g,g)^x$
- Key Encapsulation: $C \leftarrow g^r$ $K \leftarrow e(g,g)^{xr}$.
- Key Decapsulation: $K \leftarrow e(C, g^{\times})$.

Making Decapsulation Leakage Resilient

- Share $sk = g^x$ as: $\phi_0 = g^s$ and $\phi_1 = g^{x-s}$
- Leakage Resilient Key Decapsulation:

$$r \stackrel{*}{\leftarrow} \mathbb{Z}_{p} k' \leftarrow e(C, \phi_{0}) \qquad \phi_{0} \leftarrow \phi_{0} \cdot g^{r} \\ K'' \leftarrow e(C, \phi_{1}) \qquad \phi_{1} \leftarrow \phi_{1} \cdot g^{-r} \\ K \leftarrow K' \cdot K''$$

"Standard" ElGamal Encryption

Assumption

- g generator of cyclic group of order p. Sample random x ← Z_p, A gets g^x.
- Let x₁, x₂,... be random and x'_i ← x_i/x (x = x_i ⋅ x'_i mod p)
- For $i=1,2,\ldots$, $\mathcal A$ chooses $f_i,g_i:\mathbb Z_p o \{0,1\}^\lambda$ and gets

 $f_i(\mathbf{x}_i)$ and $g_i(\mathbf{x}'_i)$

 $\bullet~\mathcal{A}$ gets DDH challenge, i.e. must distinguish

$$g^{x}, g^{r}, g^{x \cdot r}$$
 from g^{x}, g^{r}, g^{s}

Any idea as to whether this problem is/isn't hard? (Easy if $\lambda > \log p/2)$