A Billion-mulmods-per-second PC

Chen-Mou Cheng National Taiwan University

jointly with: Daniel J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chun-Hung Hsiao, Tanja Lange, Zong-Cing Lin, and Bo-Yin Yang

Eurocrypt @ Köln, Apr. 28, 2009

Who wants to be a billionaire?

Warning: Spoilers Ahead!

- (Some of) you will be hearing a talk on Thursday morning about how important ECM is and how fast we can run ECM on PCs (mainly GPUs)
- Please go get some Kölsch instead if you don't want to spoil the fun!

Modular Multiplication

- Mulmods are useful
 - Special moduli: ECC, pairing
 - General moduli: ECM, RSA
- How fast can we do mulmods?
 - More interestingly, on PC

A Brief Time Table					
Date	Raw	Scaled	Comments		
Sep., 2008	17.91	38.09	GMP-ECM (Q6600)		
	22.66	48.19	GPU-ECM (280)		
Jan., 2009	41.88	89.07	No fault of ours (295)		
Feb., 2009	164.31	164.31	Thanks, Thorsten! :)		
Apr., 2009	153.75	153.75	CELL-ECM (QS22)		
	200.98	200.98	X86-ECM (K10+)		
	400.48	481.30	New GPU-ECM (295)		

- We measure (mul+sq)-mods in scalar multiplication from *actual* ECM
- Earlier numbers are for 280 bits (scaled to 192 bits)

Squeezing out Extra Bits of Performance

Modern (x86) CPUs tend to be underutilized!

- AMD K10: up to 3 INT and 3 FP/SIMD instructions per cycle dispatched, out of order if necessary
 - INT: $64 \times 64 = 128$ -bit mul, per 2 cycles
 - SIMD INT: *two* $32 \times 32 = 64$ -*bit* muls per cycle
 - SIMD FP: two DP (53b mantissa) muls per cycle

Can run INT and SIMD (either INT or FP) together

• Intel Core*: INT slower, conflict with SIMD execution

Software Hyper-threading

- Idea: run many "threads" of execution simultaneously to exploit all circuitry available on K10
 - 73 cycles/ mulmod: 64-bit INT muls
 - 426 cycles / 4 mulmods: 128-bit SIMD INT muls
 - Try interlacing two threads at various ratios, say 6:1
- Result: 22.3% speedup from using INT MUL alone
 - Also works on Cell (240%)
 - Doesn't work so well for Intel CPUs (max. $\sim 10\%$)

The Billion-mulmods-per-second PC

• Buy parts, say, from NewEgg.COM (4/28/2009 3AM)

ITEM	US\$	Description	Notes
CPU	190	AMD Phenom II 940 (3.0 GHz)	retail K10+
MB	170	ASUS M4N82 Deluxe	ECC-capable
RAM	107	4x DDR2-800 ECC Kingston 2GB	
GPUs	1060	2x PNY 896MB NVIDIA GTX 295	
Case	360	Supermicro 4U with 865W PS	5x fans
HDD	110	2x Seagate SATA II 320GB	RAID 1

• Total: 1997 USD for 1.3 billion 192-bit mulmods/s.