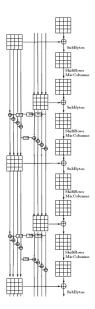

### AES-256 is Not Ideal

Alex Biryukov, **Dmitry Khovratovich**, Ivica Nikolić

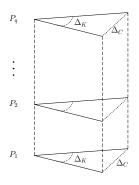
University of Luxembourg


Eurocrypt 2009 Rump session 28 April 2009

### **AES-256**



- 128-bit block;
- 256-bit key;
- Approved for TOP SECRET in the U.S.;
- Best attack on 10 (of 14) rounds: 2<sup>6</sup> related keys, 2<sup>114</sup> data, 2<sup>173</sup> time.

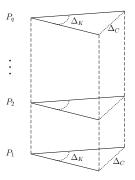

### **AES-256**



- 128-bit block:
- 256-bit key;
- Approved for TOP SECRET in the U.S.;
- Best attack on 10 (of 14) rounds: 2<sup>6</sup> related keys, 2<sup>114</sup> data, 2<sup>173</sup> time.

### Secure?

## **NEW**: Not as an ideal cipher




**Definition.** Differential *q*-multicollision:

$$F_{\Delta_K}(P,K) \stackrel{\text{def}}{=} E_K(P) \oplus E_{K \oplus \Delta_K}(P);$$
  
 $F(P_1,K_1) = F(P_2,K_2) = \cdots = F(P_q,K_q).$ 

# **NEW**: Not as an ideal cipher

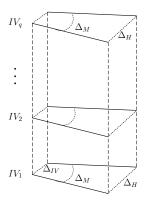
#### Differential *q*-multicollision:



#### Complexity:

- $ightharpoonup \gtrsim q \cdot 2^n$  for an ideal cipher;
- $q \cdot 2^{67}$  for AES-256.

# **NEW**: Not as an ideal cipher


**Practical distinguisher** for 13 rounds (14 are similar):

| $\Delta_K$     | 0f070709 0e070709 0f070709 0e070709                 |
|----------------|-----------------------------------------------------|
|                | •••                                                 |
| $\Delta_{P_1}$ | a3 <b>1f1f21 00000000</b> 19 <b>1f1f21 00000000</b> |
| $\Delta_{P_2}$ | 3a <b>1f1f21 00000000</b> db <b>1f1f21 00000000</b> |
| $\Delta_{P_3}$ | 13 <b>1f1f21 00000000</b> 7e <b>1f1f21 00000000</b> |
| $\Delta_{P_4}$ | fd <b>1f1f21 00000000</b> 06 <b>1f1f21 00000000</b> |
| $\Delta_{P_5}$ | ab <b>1f1f21 00000000</b> db <b>1f1f21 00000000</b> |
| $\Delta_{C}$   | 01000000 01000000 01000000 01000000                 |

- Prove the lower bound for q = 5:  $2^{75}$ ;
- Find 5-multicollision in few hours on the PC;

# NEW: Not in the Davies-Meyer mode

### *q*-pseudocollisions:



- Fixed  $\triangle IV$ ,  $\triangle M$ ,  $\triangle H$ ;
- $\blacksquare \approx q \cdot 2^n$  for an ideal cipher in DM;
- $q \cdot 2^{67}$  for AES-256.

## **NEW**: Not in the related-key framework

Trail with 5 active S-boxes in the key schedule and 19 — in the state.

Recover 1 of 2<sup>35</sup> related keys in:

- 2<sup>131</sup> time;
- 2<sup>96</sup> data for each key.

# Summary

Questions? Work in progress

